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We discuss the different transitions from hexagonal to lower symmetry phases 
which result from a molecular tilt inside the columns. Several orientational struc- 
tures are explained and others are predicted. Our model also applies to other 
physical phenomena, in particular the elliptical deformation of columnar aggre- 
gates in lyotropic liquid crystals 

1. Introduction 
Columnar phases are obtained with flat molecules which we shall take to be 

disc-like. They actually have a discrete symmetry: in most cases it is defined by a 
binary or ternary, eventually quaternary, axis perpendicular to their plane. Numerous 
interesting features are associated with the corresponding degrees of freedom and will 
not be considered here. We note that in a columnar phase the molecules are stacked 
in columns which form a two dimensional lattice which is triangular or rectangular 
in practice. There is no positional long range order inside one column (that is a one 
dimensional liquid). Typically the sequence isotropic-nematic-triangular columnar is 
obtained so that the principal nematic axis yields the axis of the column. However, 
when the temperature is lowered, other columnar mesophases appear in which the 
orientational order is more complex. In other words the director departs from the 
column axis, for a review see [I ,  21. Figure 1 shows several typical orientational 
conformations encountered in various discotic compounds. In most cases the rectan- 
gular cell is obtained through a slight distortion of the triangular primitive cell. In this 
paper the driving mechanism of the transition is assumed to be orientational in 
nature. The crystallographic changes are simply induced, as they are in magnetic 
transitions for instance. For this reason they are hereafter neglected. However it 
should be recalled that such a coupling to the lattice distortion can change the order 
of the transition from two to one. 

In view of the large number of parameters entering the problem, this paper is not 
intended to give an extensive study, which would involve complicated phase diagrams. 
Omitting computational details, we focus on the description of the theoretical 
ingredients required to explain the structures discovered so far. Emphasis is made on 
the similarities and differences with other physical systems exhibiting structures akin 
to those of discotics mesophases. 
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I C )  

( d  1 
Figure 1. (G)  The hexagonal phase Dhd . (b)  The rectangular phase Drd(P2, /a). (c) The rectan- 

gular phase Drd(C2/m). ( A )  The 4-sublattice phase of symmetry P(321). Experimental 
evidence for a,  b, c can be found in [2], and for d in [9]. 

2. Model 
We investigate the symmetry breaking that may occur if we start from a triangular 

columnar phase in which the molecular director is parallel to the column axis z. This 
has also been studied by Sun and Swift [12] on pure group theoretical grounds. 
To gain more insight into the mechanism of the transitions, we introduce a semi- 
microscopic model, to be studied a la Landau. No equilibrium state is assumed 
a priori, this stems from a rather realistic choice of interaction. We also predict new 
phases not obtained in [12, 13, 141. 

In the absence of the others, each column has a full rotational invariance about 
z as well as through the reflection z + - z.  The irreducible representations of group 
D, are complex one dimensional and labelled by an index n. Under rotation through 
an angle 8, $, on column i transforms into 

$1 + exp (inel$, . 
Here we shall only discuss n = 1 and n = 2 although some of the results are valid 

for all H .  In so doing, a tilt of the director with respect to z can be dealt with. Referring 
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Order in columnar phases 307 

to the general nematic order parameter, the tensor Q, we define 
$ ( I )  = Qxz + iQYz, (index l), 

= Qxx - QYY + icexY + QYXL (index 2); 
note that if z --f - z ,  $( I )  -+ - $('), $(') -+ $(2). The case $(I )  = 0, $(*) # 0 represents 
a nematic order of the projection ( n x ,  n,) of the director, e.g. a situation where the 
molecules are tilted by ? CI (k at random) from the xy plane about a given axis in xy. 
In addition, the representation n = 2 describes two cases without tilt: (i) a secondary 
nematic order in the xy plane, e.g. if the molecules have a binary axis parallel to z (that 
is rectangular shaped molecules), and (ii) an elliptic deformation of the tubes as in 
lyotropic systems [3]. 

We now write a free energy form for the order parameter 
f;'"' = F p  + F p .  

F t )  (L for local) takes into account the statistical mechanics of an isolated column, 
i.e. without interactions between $I") and I,$") for different columns i and j .  For 
instance, assuming rotational invariance for each isolated column, we can use the 
classical expression 

The reader might object that this symmetry is not appropriate in a discrete lattice. 
This remark is relevant and is taken into account in $4. Formula (1) represents only 
a first order description (rather like the Bragg-Williams approximation). The interac- 
tion is contained in &(") for which we make the following choices: 

E;'") couples nearest neighbour columns (notation (i, j ) )  

U(") is quadratic in $@); 

U'") is invariant under any overall rotation 9ta about z which is to be understood 
as 

R,, + BaR,, -+ = eln8$?, $f') -+ Ba$f') = e'nBt+by). 

These prescriptions lead to 

with the general form for interactions Co (isotropic) and C. 2n (tensorial) 
Co = Do exp (iho), 

C Z n ( R y )  = D-2n exp [ - 2ni(O, - h-2n)1. 
Do and K2" are positive numbers and 8, is the polar angle of vector R, in the xy plane 
with respect to an arbitrary direction. This model is not suitable to deal with the 
breaking of translational invariance along the z direction. This actually occurs in 
some compounds (e.g. helical order / / z )  and is left for a later study. 

3. Landau theory for continuous transitions 
In this section we investigate the different structures which may break the sym- 

metry of the high temperature phase (nematic + triangular) assuming a second order 
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Figure 2. The first Brillouin zone of the triangular lattice. (I, J) is a basis of the dual lattice. 
qA = OA (or A‘, A”) ,  q, = OB, q(x) = OX, q‘(x) = OX‘. 

transition. Then the order parameter corresponds to the lowest eigenvalue of the 
quadratic part of F(”) or equivalently Fp) (apart from the diagonal term pI $J2). Since 
all solutions are independent of z, this variable is systematically dropped from now 
on. After Fourier transforming in the xy plane we find the eigenvalues of 

rn’(k) = -ReCo(k) f lC-2n(k)l. 

Due to the sixfold symmetry of the lattice it turns out that C-,(k) and C-,(k) are, 
apart from a phase factor, complex conjugate to each other and m* (k) are the same 
for n = 1 and n = 2. The critical modes are given by the wavevector k which 
minimizes m- (k). The stationary points of m- (k) in the first Brillouin zone (see figure 
(2)) are: 

(i) k = 0, m-(0)  = -660; 
(ii) k = q,, qA,, q,“, m-(qA)  = 2D(1 - 2x); 

(iii) k = q(x) or equivalently by symmetry q’(x) 11 qe where 

1 2 - x  q’(x)a - - - cos - 
2 4 1  + x ’  

9 2  + 12x + 12 
8(1 + x) ’ 

m-(q(x)) = 260 

Figure 3. Diagram showing the critical wavevector as a function of the point (D = D,cos a,, 
D’ = D-, or D.-4): k = 0 (region F ) ,  k = qa (region A),  k = q(x) (region I), k = qs 
(on the half-line D’ = 0, D < 0). 
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Order in columnar phases 309 

with the definition D = D,cos do, x = (D-,/D) or (D-,/D). Comparing the different 
values of m- given here yields the critical wavevector as a function of D and D-, (or 
D-,). This is shown in the diagram (see figure 3) ) .  

4. Discussion 
4.1. The ferro phase (region F )  

.In the context of columnar phases, this would be the Drd(C2/m) (see figure l(c)) 
structure, usually interpreted by a uniform tilt of the molecules. Note that with our 
model energies (1) and (2), this ferro solution at q = 0 has a full rotational degeneracy 
(this is a consequence of C-,,(k = 0) = 0). Only anharmonic terms having the 
symmetry of the crystal can fix the orientation with respect to the lattice. 

4.2. Two-sublattice and four-sublattice phases (region A )  
(1) These phases are often encountered in various fields: adsorbed H, or N, 

molecules [4], hexatic smectics [5],  lyotropic systems [3], and columnar phases. They 
are usually called chevron or herringbone structures. For elongated molecules ad- 
sorbed on a triangular lattice (such as grafoil), the molecular orientation on one 
sublattice is generally orthogonal to the other (i.e. the T structure) [4]. But in the other 
situations this property does not hold. 

We now discuss how this feature can be taken into account in our models. In 
region ( A )  of figure ( 3 )  the order parameter $(,) (n = 1, 2) for which F'") is minimum 
(with the simple quartic term b, I $I4) is 

= i,k?) exp(iq, * R,) (or A', A"). (3) 

The $s on the two sublattices are opposite to each other. For n = 1 we have an 
antiferromagnet like structure (shown in figure 4(a)). For n = 2 reversing the sign in 
$('I amounts to a physical rotation of 4 2 :  this is the T structure given in figure 4 (b)). 
The existence of this phase has been predicted theoretically by Harris and Berlinsky 
[4] for a pure electric quadrupolar interaction (their 2-in phase). In our model this 
would impose fixed relative values of D$), D!\, Oh2) and 004. In equation ( 3 )  the 

( a )  
b )  

Figure 4. (a) Order parameter pattern for n = 1, q = qa. The vector (Re$('), Im$(')) is 
shown for 6-2 = 0. (b) Order parameter pattern for n = 2, q = qa, 8-4 = 0. The rods 
represent ($'2'>1'2. 
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orientation of $(”) with respect to the lattice is fixed by the anisotropic part D-2n 

( 2 )  We further investigate the case n = 2 .  The existence of structures other than 
T has been reported both experimentally [3, 51 and theoretically [7, 81. If the angle is 
different from n/2, summing over the lattice gives a non-zero contribution and the 
structure has to be described with an extra Fourier component at q = 0, like a 
ferrimagnet for instance. Actually the T structure exists only if the coupling with the 
crystalline order is weak. For n = 2 the crystal field which has a sixfold symmetry, 
induces a cubic term 

1 r p 6 ( p ) 3  + c.c. = y 1 (7 e-61~~~) <+!2))3 + c.c. 
i i 

Fourier transformation of this yields the relevant couplings 

r p 6  $‘2’(q = 0>$(2)(qA)$(2)(qA), (4) 

r-6 $(2)(q,4)$(2)(qA )$(2’(q,4’)’ ( 5 )  

This has several consequences: (i) because of ( 5 )  the transition is driven first order, and 
(ii) the ordered state is then such that 

$(*)((qA) = exp (- 2in/3)$(’)(qA.) = exp (- 4i~c/3)$(~)(q~“). (6) 

This superposition of three plane waves is a 4-sublattice structure (see figure 5). One 
of the sublattices is characterized by a zero order parameter. This phase has also been 
obtained in [6] for quadrupoles on a triangular lattice. It is strongly reminiscent of the 
configuration (P321) shown in figure l(d)) seen by Levelut et al. [9]. (iii) If 17 is small 
enough, the 2-sublattice phase is stabilized at a lower temperature because the quartic 
term then dominates. Moreover a uniform component a t  q = 0 is induced by 
equation (4). The orientations on the two sublattices are no longer orthogonal: this 
is the herringbone structure (see figure (6)). We note that the uniform component is 

Figure 5. The 4-sublattice structure for n = 2 (rods) 
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Figure 6. The herringbone (or chevron) structure for n = 2. 

absent in the 4-sublattice phase because of (6):  

($(2)(qA))2 + ($~*)(%,))* + ($(2)(qA,,))2 = 0. 

It seems to us that the intermediate 4-sublattice phase has been missed in [7]. Let us 
stress that the preceding considerations could apply in a straightforward manner to 
the elliptic deformation of column-shaped aggregates of lyotropic molecules [3]. 

(3) We now discuss more precisely the case of tilted chevron phases in discotic 
columns; this is slightly more complex. The tilt is described by $(I) and reflection 
invariance ( z  + - z )  rules out odd terms in $(I). Thus the previous argument for the 
existence of the $(2)  chevron structure cannot hold. However there certainly exists a 
coupling between $'I) and $(2) which at lowest order is 

(7) 

whatever the lattice structure [15]. The different types of coupling between modes are 

p 1 ($y)*($y)* + C.C. 

P$'')(qA)$(I)(qA) ($(*)(q = o>>*, 
p$(l)(q = O)$("(q = 0) ($(2)(q = O))", 

B$'"(s = o>$cl)(qA) ($(*)(qA))*? 

8$"'(4A )$(l)hA,) ($(2)(qA4*9 

i 

Classically this would lead to first order transitions if f l  is large enough (contrary to 
y there is no reason to regard p as a perturbation because the coupling (7) does not 
rely on the existence of a lattice and is always present). Two types of structures are 
then expected: 

(i) tilted herringbone (see figure (7)) with 

$(I)(qJ # 0, $(l)(O) # 0, lp2)(qA) # 0, $(2)(o) f 0, 
$(I)(QA.) = $(yqA,,) = $(2)(q4,) = $'"(qA") = 0; 

(ii) 4-sublattice tilt (see figure (8)) 

$(')(qA) = - exp (- in/3)$(')(qA,) = exp (- 2in/3)$(')(qA,4 # 0, 

$(*)(qA) = exp (- 2in/3)$(*)(qA,) = exp (- 4in/3)$(*)(qA.) # 0, 

I p ( 0 )  = $'yo) = 0. 
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Figure 7. Thc tilted herringbone phase (e.g. discotics). The arrows picture $(‘I and the rods 
(i,k(2’)’’2. For the sake of clarity we have drawn the rods orthogonal to the arrows. That 
would correspond to a choice p > 0. 

Figure 8. The tilted 4-sublatticc phasc. 

The former is identified with Drd(P21/a) and the latter with the P(321) phase of 
~91. 

The transition 

Drd(p21 --* Dhd 

-+ T / ” +  

is so accounted for. However in some compounds it is split as [lo] 

Drd(P2, la)  -+ Drd (C2/m) + D h d  

+ T 7 + .  

In our model this is interpreted as follows; when the temperature decreases a ferro 
order first sets in (see 94.1)): 

l p ( q  = 0) # 0, l p ( q  = 0) # 0. 

This is possible if ,ul + rn; (0) reaches zero well before ,u2 + rn; (q,,). In spite of the 
coupling (7) it has been checked that the possibility of a linear instability remains, in 
particular if (oh2), DS2’) lies in region A .  It leads to 

$”’(%) z 0% $“)(q,4) z 0 
which describes a tilted herringbone structure. It is worth stressing that this ferro- 
herringbone transition can be second order in spite of the existence of the cubic term 
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(7): in the ferro phase the 7c/3 rotation invariance is lost and the 3 wavevectors qa, qa,, 
q,,,, are no longer degenerate. Thus there are no star contributions such as 

to force the transition to be first order. Experimentally it turns out that the corre- 
sponding transition is second order or almost second order contrary to the hex- 
agonal -+ chevron transition which is clearly first order [lo]. 

4.3. The incommensurate phase (region I )  
So far there is no experimental evidence for such a phase. We hope this paper will 

stimulate experimental research in this direction. 

4.4. Antiferro X Y  model (region B) 
The qe structure is obtained only for a negative (C, < 0) isotropic (C-2,, = 0) 

interaction. This is the triangular antiferro XY model, the solution of which is classical 
in the context of frustrated system [I I]. 

5. Conclusion 
We have developed a model of interacting columns allowing us to go beyond a 

simple phenomenological approach. The underlying lattice structure enters the prob- 
lem through the intercolumnar couplings. The ordered phases and the corresponding 
phase diagram can, in principle, be obtained by varying the parameters. Conversely 
the experimental results might shed light on the hierarchy of the coupling strengths. 
After slight modifications the same model can take into account the case of ternary 
molecules (i.e. n = 3 for the order parameter) and the helical order often associated 
with them. Finally let us stress that an original mechanism for the transition to the 
herringbone has been exhibited. Also the 4-sublattice structure is accounted for and 
an incommensurate phase predicted. 

We benefited from numerous discussions with C. Destrade, NGuyen Huu Tinh, 
P. Heiney, H. Fontes and especially A.-M. Levelut. 
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